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Using Monte Carlo simulations we study cooling-rate effects in a three-dimensional Ising model with
four-spin interactions. During coarsening, this model develops growing energy barriers, which at low tempera-
ture lead to very slow dynamics. We show that the characteristic zero-temperature length increases very slowly
with the inverse cooling rate, similarly to the behavior of ordinary glasses. For computationally accessible
cooling rates the model undergoes an ideal glassy transition, i.e., the glassy transition for a very small cooling
rate coincides with a thermodynamic singularity. We also study the cooling of this model with a certain
fraction of spins fixed. Due to such heterogeneous crystallization seeds, the final state strongly depends on the
cooling rate. Only for a sufficiently fast cooling rate does the system end up in a glassy state, while slow
cooling inevitably leads to a crystal phase.

PACS numbegps): 05.50+q

[. INTRODUCTION pends not only on the area of its boundéag in the ordinary
Ising mode], but also on the total length of edges of this

Although intensively studied for several decadds, boundary. At sufficiently low temperature, due to these bar-
glasses are still not fully understood due to their very com+iers, the dynamics of the model is able to trap the system in
plicated structure. However, gradual progress can be clearline disordered phase, which we can tentatively identify as a
observed. Recently, very interesting theoretical results werglassy phase. The trapping mechanism is effective only for
obtained concerning, for example, aging in some modeléemperatures below the corner-rounding transifign For
with glassy dynamic$2]. From a theoretical point of view, T>T, the trapping mechanism is not effective; fastdi-
one of the problems is the lack of sufficiently simple modelsnary) dynamics is restored, and the system quickly evolves
of glasses. Although recently important progress has beei®ward the low-temperature phase. However, Shore and co-
made, the most realistic off-lattice models still constitute anworkers argued that their model is not yet a satisfactory
enormous computational challen{@]. A possible alterna- model of glasses because these barriers vanish at the corner-
tive might be lattice models. Even when the existence of théounding transition, which in turn implies unrealistically fast
lattice structure is questionable, such simplified modeldncrease of zero-temperature characteristic lehgthith the
sometimes do provide a satisfactory description of a macroinverse cooling rate . It would thus be interesting to look
scopic system. A prime example is that the critical point offor some other nonrandom models which generate energy
certain binary alloys is in the universality class of the three-barriers and which, hopefully, would be free of this defi-
dimensional ferromagnetic Ising modg#]. However, an  ciency.
Ising model with only ferromagnetic interactions is not a Recently, it was shown that a three-dimensional Ising
good candidate for a model of glasses, since its relatively fagnodel with plaquette interactions also generates diverging
dynamics cannot trap the system in the disorddggdssy  energy barriers which slow down the low-temperature dy-
phase, and the system quickly reaches the low-temperatur@mics[9,10]. The energy barriers in this model appear to be
(crysta) phase. The simplest way to slow down the dynam-due to the same mechanism as in the SS model. However, in
ics is to introduce randomness into the Hamiltonian of thea number of respects the behavior of this model is quite
model[5]. However, glasses under certain experimental condifferent from the SS model. First, there exists a temperature
ditions might be transformed into translationally invariant Ty (later identified as a glassy transition temperatuvkich
crystals, and it is unlikely that random Hamiltonians lead toseparate two regimes: For>Ty the random quench, after a
translationally invariant solutions. This suggests that oneshort transient, reaches the liquid phase, in which it seems to
should look for translationally invariant Hamiltonians with a be stable, at least during the computationally accessible time
glassy phase resulting exclusively from the dynamics of thescale. FoiT <T, the random quench evolves toward the low-
model and not from built-in randomness. temperature phase, but due to the above mentioned energy

In random systems slow dynamics is mainly due to en-barriers it is trapped in the glassy phase. However, the crystal
ergy barrierd6]. Is it possible to generate energy barriers insample undergoes a transition into the liquid phase at the
nonrandom models? A positive answer to this question watemperature, which is considerably higher than the glassy
given some years ago by Shore and co-work@8] who transitionT,. This means that in a certain temperature range,
showed that in the three-dimensional Ising model withdue to the very strong metastability, the system remains ei-
nearest- and frustrating next-nearest-neighbor interactiorther in a crystal phase or a liquid phase, depending on the
(the SS model there exist energy barriers which diverge initial configuration. In addition, numerical calculations sug-
with the size of correlated regions. These barriers are due tgest[10] that in this model energy barriers exist even for
the fact that the energy of an excitation in this model detemperatured>Ty, and thus this model might be free of
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the cooling-rate anomaly of the SS model. seeds is done in Sec. IV. A final discussion of our results,
The objective of the present paper is to examine the beincluding the relation with the ideal glassy transition, is pre-
havior of this model under cooling. We show that the char-sented in Sec. V. In this section we also argue why our
acteristic zero-temperature length indeed increases mudhodel, being in some sense fine tuned, might shed some
more slowly with the inverse cooling rate than in the Sslight on the apparent robustness of glasses.
model, and it is probable that this increase is logarithmic,
lo~—Inr, as expected for ordinary glasses. [l. MODEL AND ITS BASIC PROPERTIES
However, for extremely slow cooling rates, such an in-

! ; . In the present paper we study the three-dimensional Isin
crease ofly in our model is unlikely to hold. We observed P pap y 9

h ithouah ity in thi i model with a four-spin interaction. Models with multispin
[10] that, although very strong, metastability in this model isjeractions have frequently been used, for example, in the

only a quantitative effect, and for a sufficiently large system. . caxt of random surfacdd6] or lattice field theon[17—

size a droplet nucleation mechanism should be effectivelg]_ There are also some reports of glassy behavior in such

This means thgt, for a temperature below _the critical tem'systems[ZO—ZZ. Our model is defined by the Hamiltonian
perature(which is determined from the crossing point of the

free energies of the liquid and crystal phasd¢be model
prepared in the liquid state should collapse onto the crystal H=-2 SSSS, 1)
(or glassy phase within a finite time. However, the estimated
size of critical droplets is rather large, which suggdd8]  where the summation is over elementary plaquettes of the
that this finite time is also large. Thus, the cooling ratescubic lattice, ands;= + 1. This model was recently studied
needed to observe such a collapse are presumably computg-the context of lattice field theory23]. Moreover, the
tionally inaccessible. glassy behavior was studied for the random version of model
Some time ago Anderson proposgtl] that the glassy (1) [24]. Clearly, a ferromagnetic configuration minimizes
transition, which is a kinetic phenomenon, might be relatecHamiltonian(1). It is also easy to realize that flipping copla-
in the limit of small cooling rate to a certain thermodynamic nar spins does not change the energy. Thus any configuration
transition[12]. The results of the present paper show that theyptained from the ferromagnetic configuration by flipping
Ising model with plaquette interactions provides an interestcoplanar spins is also a ground-state configuration. Also, any
ing realization of this idea: the peak in the specific heat ofcombination of such coplanar flippingeven for crossing
the |IQUId occurs exactly at the temperature where the interp|ane$ does not increase the energy. S|mp|e ana|y5i5 a|ong
nal energy jumps under very slow cooling. these lines shows that for the model on the lattice of the
Anderson’s idea has had a rather limited experimentajinear sizeL the degeneracy of the ground state is equal to
suppor{13]. The main problem is that under slg@4] cool-  23LAjthough the ground state of this model is strongly de-
ing real |IQUIdS do not become trapped in the glassy phasgenerate, its ground-state entropy is zero.
but instead crystallize. The reason for this is that when |IC]U|d All the results reported in this paper were obtained using
is cooled below the melting point it becomes metastablea standard Monte Carlo method with random sequential up-
and, within a finite time, due to heterogeneous or homogedate using the Metropolis algorithf25]. Some other details

neous crystal nucleatidri9] it crystallizes. Only under suf-  concerning these simulations can be found elsewftEk
ficiently fast cooling can the crystal nucleation be avoided

and the liquid be trapped in the glassy state. In this context,
the model with plaquette interactions corresponds to an al-
most ideal liquid with an extremely large lifetime of a meta- ~ Upon heating an arbitrary ground-state configuration, the
stable state. Although such strong metastability allows us ténodel undergoes a sharp transition at the temperature
examine the interesting regime of slow cooling, it also inhib-~3.9, where we have set the Bolzmann conskgnto unity
its the crystallization of supercooled liquid. To study the[9,23]. This transition is accompanied by a pronounced peak
competition of crystallization and glass formation within in the specific heat. The system sides 24 and 40 used in
computationally accessible times, we enhanced the formghese simulations were rather large, and the location of this
effect by fixing a certain fraction of spins. We observe thatpeak is almost independent &n{10]. These results suggest
due to such heterogeneous crystallization seeds the final stafat the model undergoes a thermodynamic transition around
of the system indeed strongly depends on the cooling ratel =3.9.
That is, only for sufficiently fast cooling can the system beat However, upon cooling, a high-temperatuléquid)
the crystallization trap and end up in a glassy state. When theample the model does not undergo any changé=a8.9.
cooling is slow, similar to real liquids, the system crystal- Instead, it is only when cooled beloW=T,~3.4 that the
lizes. Thus, in agreement with experiments, the glassy trarliquid loses its stability and evolves toward the low-
sition appears to be a kinetic phenomenon, with the coolingemperature phase. We observed that fo3[4<3.9 it is
rate determining the final state of the system. These resultgrtually impossible to direct the evolution of a liquid sample
appear to indicate that the three-dimensional Ising modefoward a low-temperature phase. The transitioT &tT is
with plaquette interactions is a very promising candidate foralso accompanied by a peak in the specific heat, and, for the
a lattice model of glasses. examined system sizds=24 and 40, the location of this

In Sec. Il we introduce the model, and briefly describe itspeak is also almost independentlof10]. The behavior of
already reported, rather unusual, properties. In Sec. Il wéhe specific heat in the vicinity df is shown in Fig. 1.
study the behavior of our model under continuous cooling. Using thermodynamic integration we calculated the free
The analysis of the results in presence of crystallizatiorenergy of both liquid and crystal phases of the mddél,

A. Thermodynamics and metastability
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which show that the crossing point of these free energies ibe disregarded: in Sec. IV, we suggest that this is an essential
aroundT = 3.6. However, no changes were observed at thatactor responsible for the glassy properties of the model.
temperature during the heating or cooling. The above deSuch a strong metastability of modd) is probably related
scribed thermodynamic properties suggests that at computée dynamically generated energy and entropy barriers. How-
tionally accessible time scale, mod&) undergoes two tran- ever, a more precise understanding of the mechanism gener-
sitions depending whether the system is being cooled oating such a strong metastability is clearly desirable.
heated. These transitions seem to screen the “true” first-
order thermodynamic transition which presumably takes B. Domain coarsening and energy barriers
place aroundl=3.6, i.e., at the crossing point of the free
energies.

Such a behavior of moddll) resembles hysteresis and

When cooled below its critical point, a macroscopic sys-
tem undergoes the interesting phenomenon of domain coars-
metastability effects, which frequently occur in ordinary ening [30]. Various theore_t|cal and numerical techniques

predict that for systems with a scalar order parameter and

first-order transitions. However, it is believ¢a6] that for onconserved dynamics, as is the case here, the characteristic

short-range interacting systems such effects are only quan[iﬂn th1 (which approximately corresponds to the average
tative, and longer simulation time decreases the hysteresg 9 >N approxir y resp 9
Size of domaingshould increase with timeas

range and eventually pinpoint the temperature of the first-
order transition. On the other hand, our simulatiph@ sug-
gest that in mode{l) squeezing the hysteresis into the tem- | ~t12, v
perature range smaller than (3.4,3.9) is almost impossible
[27]. The only way to overcome the very strong metastabilityHowever, as shown by Shoeg al.[7], for certain models of
of model(1) is to start simulations from inhomogeneous ini- this kind the increase dfcan be much slower. That is, they
tial configurations, i.e., containing both phases of the systenshowed that for the SS model and sufficiently low tempera-
Indeed one observg40] that the evolution of such a system ture the characteristic lengthincreases only logarithmically
depends on whether the temperature is above or below tha time (I~Int) [31].
expected thermodynamic transitidr=T,= 3.6 [28]. Of course, a slow coarsening is compatible with a com-
It is also interesting to confront the Monte Carlo resultsmonly accepted conception of glasses. One has to empha-
with mean-field calculation$29] or its extension to the size, however, that coarsening in glasses cannot be regarded
cluster-variational methodCVM) [19]. These calculations as a growth of crystalline domairsvhich is the case for
predict, in agreement with Monte Carlo simulations, thatmodel (1)]. For glasses, even the very definition of charac-
model(1) undergoes a first-order phase transition. Moreoverteristic length scale constitutes an open problem. If it exists,
the location of transition point as predicted by the CYM)]  most likely this quantity does not measure the length of any
is also in a good agreement with our estimatiy=3.6. A recognizable order.
characteristic feature of these mean-field calculations is the Recently we have noted that for modé) the character-
existence of spinodal temperatures, i.e., a range of temperéstic length also increases very slowly in time, presumably
ture where one of the phases of the model exists as a metatso logarithmically. An additional support for the fact that
stable phase. However, these simple mean-field calculatiomaight increase in the same way as in the SS model comes
give no clue about the dynamical time scales of metastabilfrom the fact that both models at low temperature generate
ity. Since in many systems metastability, as we already menenergy barriers in the same manner.
tioned, is only a quantitative effect, such phases are usually To see how these barriers arise in mo@e| let us con-
disregarded as artifacts of the mean-field approximation. Isider first its two-dimensiondbquare latticeversion. In par-
model (1), however, metastability is very strong and cannotticular, let us consider a square domain of" spins of
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++++++ + + +++++ + temperature such barriers make the process of removing such
+=— ===+ + + 4=+ - +|+ excitations extremely slow. Similar arguments were more
+ - — - —|+ + + 4|+ -+ —|+ thoroughly elaborated for the SS mod@l.
4+l— — — —|+ + 4+ 4=+ — 4|+ However, to show that such barriers are relevant in the
- - — |+ + + 4+ -+ —|+ process of coarsening, one has to show that the system spon-
-+ +F4++ 4+ o+ taneously generates such cubic configurations. Snapshot con-
@ ®) © figurations for the SS model clearly sh¢#j that the system

FIG. 2. (a) An example of a low-energy interface in the two-
dimensional version of modél). An excess energgi.e., the num-
ber of “unsatisfied” plaquettes comes from the four corner

indeed generates such configurations. However, due to the
strong degeneracy of the ground state, the situation is more
complicated for mode{l). First, let us note that low-energy
domain walls, as betweestr and — domains, are not the

plaguettes. To remove such a configuration the system is likely t®@nly possibility. For example, a cubiclike antiferromagnetic

proceed through configurations like those showitbin The excess
energy is higher in this casé) An example of high-energy inter-

domain (antiferromagnetic configuration is also one of the
ground statgssurrounded byt spins, as in Fig. €), has an

face[ferromagnetic and antiferromagnetic states are ground statesxcess energy proportional to the area of the bountary
of model(1)]. One can easily see that the excess energy increasess in the ordinary Ising modelThere are also some other
linearly with the size of this excitation. However, to remove this ground states, for which the energy of domain walls in some

excitation the system does not have to increase its er(grgge are
no energy barriers in this caseThe process of removal of such

sense interpolates between these low- and high-energy ex-
amples. The extent to which these different domains will

excitations should be much faster and basically such as in the tWOappear in the late-time configurations is determined by a very

spin Ising model.

linear sizeM surrounded by “” spins [see Fig. 2a)].

complicated dynamic process. In general, however, for high-
energy domain walls the energy barriers are much smaller or
even nonexistent, and we expect that they will be relatively

Elementary counting9] immediately shows that the energy quickly eliminated, and the late-time evolution will be domi-

excess of such a domain is independent of its 8izeand
depends only on the number of corners in this donta@,

nated by dynamics of low-energgand high-barrier do-
mains. To some extent this is confirmed in Fig. 3, which

four). Such a dependence of energy of excitation on its sizghows a zero-temperature snapshot configuration obtained

should be contrasted with the ordinafywo-spin Ising

model, where this excess energy is proportional to the perimSec.

during a cooling process, which is described in more detail in
Ill. Although we would need the whole three-

eter of the excitatiorii.e., 4M). Next let us observe that to dimensional structure to draw domain boundaries, we can
remove such an excitation the system has to flip some of theee that indeed a great many relatively large cubid(fle)

— spins, but this will inevitably increase the number of cor-ferromagnetic domains exist, and they are presumably the
ners in the resulting domain and thus the endrgge Fig. principal reason for the slow dynamics of modg). This
2(b)]. This argument easily generalizes to three dimensionsargument will be also used in Sec. Il to relate the energy
for the cubiclike domain the excess energy is proportional texcess and the characteristic length.

the total length of boundary edgése., 12M). Again this is To summarize this subsection, our simulati¢h8] sug-

in contrast to the ordinary Ising model, where the excesgest that the low-temperatufee., atT<T,) coarsening in
energy is proportional to the total area of the boundasy,  model (1) is very slow, which is presumably related to en-
6M?). Similarly to the two-dimensional case, to remove ergy barriers which the model can spontaneously generate
such an excitation the system has to climb some energy baduring such a process. An independent confirmation of the
riers, which this time will increase linearly witkl. At low  model’s slow dynamics is presented in Sec. lIl.
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FIG. 4. The internal energy as a function of
temperature for(from the top r=0.02, 0.002,
0.0005, 00002, 0.00005, and 0.00002.

Ill. COOLING which show that in mode(l) |, increases much slower than

A glassy transition is essentially a kinetic henomenonin the SS model and we believe that the growth might be
glassy y P even consistent with Eq3).

which appears when a physical system IS being cooled. Usu We simulated mode(l) under continuous cooling with a
ally one prepares the system at a certain temperature above X o ~

-~ constant cooling rate and initial temperaturdy=4.2 (T,
the glassy transition and then lowers the temperature e.g., dl

a constant cooling rate=dT/dt. One of the important quan- Tg). This means that the temperature as a function of time

tities describing this process is a zero-temperature charactep: 9'Ven byT=To—rt. The temperature dependence of in-

L . : rnal energy is shown in Fig. 4. We performed calculations
istic lengthl,, which can be regarded as an average size o ; .
or several system sizels in order to ensure that was

domains at the end of the cooling procéss., atT=0). Of o _ )
; ._..sufficiently large. For example far=0.02 the system size
course the slower the cooling the larger the characteristic ~ " - S
=30 is sufficient to obtain size-independent results, but for

lengthl,, since the system has more time to build some local” B
order. However, for glasses the growth of domains is very: _dggggggsws h?ﬁréz tgl:((e:; d7e% ?r?g (zzzrr]o?teeerr:hgaig?gugnher
slow. More precisely, on phenomenological grounds, one ex- y ! P 9y

pects[7] that in glassed increases only logarithmically EO(r) very slowly approache.s the grour}d-s_tate ene .
with the inverse cooling rate, that is, = —3. Such a behavior provides a qualitative confirmation

of the glassy dynamics of our model. For a quantitative com-
parison we have to relate the excess enefgyir) =Uq(r)

— Uy with the characteristic lengthy. Although it is not a
rigorously established relation, one can assume that these
guantities are related in the following way]:

lo~In(1/r). €

Such a slow growth of; might be contrasted with a much
faster one,

1
|0~r—1/2, (4) 5U(|’)~E (5)

which appears in an ordinary Ising mod8R]. Actually, itis  To find howl, increases with the inverse cooling rate, we
conjectured that the exponents entering asymptotic expreplot SU(r) as a function of in the double-logarithmic scale,
sions(2) and(4) are also the same for other types of dynam-

ics. With this conjecture, relatioig3) is simply a conse- 01 ' ' ' ' . .
guence of the fact that for glasses the characteristic leingth 02k 4
is expected to grow logarithmically in time. 03k 4

However, from the fact that the model has a slow low-
temperature dynamics does not follow tHgtalso slowly
increases as function of inverse cooling rate. This is clearly

0.4 -

logo[6U(r)]-0.5 -

the case of the SS model: when prepared at a temperature Rl T
above the critical temperature and submitted to some cool- 07 1 1
ing, the model inevitably has to pass through the fast- 08} .
dynamics temperature range. For the small cooling rate the 09 . ! . . !

growth of order in this temperature range is dominant, and 5 45 A gm(r)-f‘ 25 2 15

thus |,~r %2 follows. Such a rapid increase 6§ is the
main reason why SS is not yet a satisfactory model of FIG. 5. The excess energfU(r) as a function ofr in the
glasses. In the following we present some numerical datdouble-logarithmic scale. The dotted line has a slope 0.2.
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FIG. 6. The internal energy as a function of
temperature foffrom the least to the most steep
r=0.02, 0.002, 0.0005, 0.0002, 0.00005,
0.00002, 0.00001, and 0.000002. Calculations
were done foi. =50, and with 5% of spins fixed
in the “up” state. The dotted line corresponds to
heating the ferromagnetic state € 40) without
any spins fixed. The slow-cooling results (

24k g <0.0005) in the low-temperature regime are in-
j distinguishable from those corresponding to heat-
26 P ing.
28 F 4
J
_3 ) 1 L
0 0.5 1 1.5 2 25 3 3.5 4

and the graph is shown in Fig. 5. From this plot one can infelmaccount the positive curvature in Fig. 5, even slower. But
that approximatelysU (r)~r%2 which, using Eq.(5), be-  even with Eq(5) rather than Eq(6) holding, the increase of
comesl ,~r %2 However, the data in Fig. 5 have a positive |, (~r %2 or slowe) is very slow, and equally likely one
curvature, and the asymptotic increasel @imight be even can expect that the asymptotic increase is only logarithmic
slower. In addition to that we want to argue that relatiph  with r. However, much more extensive simulations would be
might not hold for model1), and a modified relation will needed to definitely resolve this issue.
lead to even slower increase Igf Slow growth of order upon cooling beloVy, is one of the
First let us briefly review arguments leading to relationindications of glassiness. It is well known, however, that a
(5). Let us consider an ordinary Ising model on a three-glassy transition is also manifested through the behavior
dimensional lattice of linear siz&. If the characteristic aboveTg. That is, when cooled to a temperature close to
length is equal td, then the number of domains in this sys- (but above the glassy transition, liquids slow down their
tem scale asl(/1)3. Since the energy associated with eachdynamics. As already reportdd0], model (1) also shows
domain scales ag (i.e., like the area of the surface of do- signs of such a slowdown: the time evolution of the internal
maing, thus the total excess energy per site in the systenenergy exhibits fluctuations on an increasing time scale.
scales a$?(L/1)3/L3=1/, and Eq.(5) follows. However, as Arguments given in this section and in previous sections
we mentioned in Sec. I, moddll) might generate low- suggest that the glassy phase might be composed of domains
energy interfaces whose energy scaled.aRepeating the whose energy increases not as their surface but rather as their
above arguments for such interfaces immediately impliesinear size. Recently, there appeared the idea that in finite-
that dimensional spin glasses, the low-temperature phase might
be also composed of effectively tensionless domains which
1 create spongelike structurg33]. This suggests that essential
ou(r)~—, (6) features of glasses and spin glasses might be very similar, at
15 least at the geometrical level.

instead of Eq(5). Although it is difficult to provide convinc-
ing arguments, we would like to argue in favor of relatiéi
rather than Eq(5). That is, we suggest that at the end of the  Although interesting on theoretical grounds, the slow-
cooling procesgi.e., atT=0), the interfaces in the system cooling regime is very difficult to examine experimentally.
will be mainly of low-energy and high-barrier type, similar As we already mentioned in Sec. |, this is because under
to those shown in Fig.(2). Indeed, as we already noted at slow cooling liquids have a sufficient amount of time to
the end of Sec. ll, the high-energy interfaces are those witlnucleate “crystal seeds” which divert the evolution toward
the lowest(or even zerpenergy barriers, and thus their re- the crystal phase. To beat the crystallization trap and trans-
moval is likely to be the fastest process in the course oform a liquid into a glass, one has to cool the system suffi-
cooling the system. Moreover, as one can see in Fig. 3, theiently quickly, which sometimes requires a very sophisti-
substantial portion of our system is indeed occupied by relaeated techniqugl5.
tively large and ferromagnetic segments; as we already men- As we already mentioned, the free energies of crystal and
tioned, interfaces between such domains have low energjquid phases of modéll) crosses aroun@i=T.~ 3.6, which
(and high barrierns means that foll (<T<T, liquid is in a metastable state. On
Inverting Eq.(6) we obtainl,~ (8U(r))2, and thus the the other hand, the present calculations sksee Fig. 4 that
increase oty would be given by half of the slope in Fig. 5. in this temperature range even under the slowest, computa-
This would imply thatl 4 increases like %! or, taking into  tionally accessible, cooling, the crystallization never occurs.

IV. CRYSTALLIZATION VERSUS GLASS FORMATION
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In order to study the competition of crystallization and glassvariance of the internal energy. The sharp peak seen in Fig. 1
formation we have to enhance the former process. We dithdicates a thermodynamiclike singularity in this model. On
this by fixing a certain fraction of spins in the “up” state. the other hand, an almost vertical drop of the internal energy
Numerical results for the cooling of such a system are showiinder continuous cooling, shown in Fig. 4, indicates the
in Fig. 6. One can see that for fast cooling=(0.2 and  proper(i.e., dynami¢ glassy transition. One can see in Fig. 4
0.002 liquid becomes trapped in théhigh-energy glassy  that the lower the cooling ratethe sharper the transition. At
state. On the other hand, slow cooling enables the System fgst sight one might expect that in the limit>0 the transi-
reach the(low-energy crystal state. Let us also note that in tjon hecomes infinitely sharp and coincides with thermody-
the limitr —0 the jump in the internal energy seems to con-ngmijc singularities, as, e.g., the peak of the specific heat.
verge toT=3.6, i.e., the crossing point of the free energiesyowever, as we already mentioned, our previous re§llks
of the crystal and the liquid phases. Such a behavior is consyggest that the metastability of the liquid is only a finite
sistent with the fact that fof (<T<3.6 the liquid is meta- time and size effect, and neither the peak nor the internal
Stable; when it is SUffiCiently enhanCEd, Crysta”ization mightenergy drop can be made perfecﬂy Sharp_ Such a scenario is
take place. in agreement with experimental description of the glassy
transition[1].
V. DISCUSSION

The main goal of the present paper was to examine the B. Mechanism of the glassy transition

behavior of the Ising model with a four-spin interaction un-  Which properties of our model are responsible for the
der cooling. We have shown that the zero-temperature charflassy behavior? The mechanism which we would like to
acteristic length increases very slowly as a function of thesuggest is based on the presence of both entropy and energy
inverse cooling rate. Moreover we have shown that wherbarriers. The latter were already discussed in this paper, and
nucleation seeds are introduced and the cooling is slovt is likely that they are the source of the slow low-
enough, the system ends up in a crystal phase. Thus, iemperature dynamics of modd) and also of the SS model.
agreement with many experiments, the glassy transition beBut they are not sufficient for the model to be glassy: in the
comes a kinetic phenomenon driven by the cooling rateSS model these barriers vanish below the critical point, and
These results, together with the fact that the model possessas a result the model orders too quickly.

a slow-coarsening dynamics, is a very strong indication that Measurements of a certain characteristic time suggest that
model (1) might capture the essence of the glassy transitiorenergy barriers in modél) exist even above the glassy tran-

in realistic systems. In this section we discuss some othesition [10]. When this property is combined with the ability

implications of our results. of the liquid to persist down td@, it leads to a remarkable
consequence: when cooled beldy, the liquid loses stabil-
A. Ideal glassy transition ity, and domain coarsening begins. But strong energy barri-

ers, which exist between certain types of domains, hamper
he process and trap the system in the glassy phase. Conse-
quently, there is no fast-dynamics regime in the low-
?emperature phase, and upon cooling the system orders very
slowly. The second crucial property is thus the ability of the
uid to persist(for some time in the metastable state. Since
e liquid state is highly disordered, we expect that it is sup-
ported by some entropy barrief87]. The only argument

Some time ago it was proposed by Anderson that in th
limit of a vanishing cooling rate the glassy transition might
be related to a certain thermodynamic transition. This ide
has only limited experimental confirmati¢@3]: the excess
entropy of the supercooled liquid extrapolates to zero at
temperature, which seems to be close to the temperature
the singularity of the viscosity, when fitted using the so-

called Vogel-Tammann-Fuicher formula. However, experi-iiop e can provide to justify this claim is that these en-

mental difficulties lead to very ambiguous results, and eve'fropy barriers are presumably related to the strong degen-

the very exlstence of t_hls hypothetical thermodynamical tran'eracy of the ground state of modd), which leads to many
sition is still not certain.

different types of small domains in the liquid phase. In the

More generally, Anderson’s idea expressed the eXpeCtaSS model the ground state is only double degenerate, and

tion that changes of dynamical and thermodynamical prOp%pparently such barriers are absent

erties should be related. Indeed, there are some reports su We have to emphasize, however, that the very concept of

porting this statement. For example, some works onenergy and entropy barrier is only approximate. At finite

frustrated and/or disordered systems indicate t_hat the appqumperature it is more appropriate to consider rather free-
ance of nonexponentially decaying correlation functions

might be induced by a certain thermodynamicad] or per- energy barriers but then the whole mechanism becomes

colative transition[35]. Another example is the SS model, much more difficult to comprehend. We hope that further

. i i i rties of this model in a more rigor-
frequently referred to in our paper, where the appearance %tﬁsdﬁz))mll explain propert g

the slow-dynamics regime is induced by the corner-rounding
transition, which is a well-defined equilibrium transition
[36]. C. Model (1) and the robustness of glasses
In our opinion, a comparison of Figs. 1 and 4 shows that It is sometimes claimed that virtually every liquid can be

model (1) conforms to Anderson’s idea. The specific heattransformed into glass, provided that the cooling rate is fast
shown in Fig. 1 is a thermodynamic quantity. It was calcu-enough[15] and any model of glasses should explain such
lated in a(standarg quasiequilibrium manner: after fixing a robustness of glasses. As already mentioned, the glassy be-
temperature we relaxed the system, and then measured thavior in our model results from the presence of both en-
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tropy and energy barriers. How robust might such propertieslegeneratelike the SS mode| and entropy barriers will

be in real systems? First let us consider the energy barrierpresumably disappear. Such a fragile nature of entropy bar-
The SS model contains competing nearest- and next-nearesters in model(1) might be a consequence of the discreteness
neighbor interactions, and mod@) contains only multiple  of the model. Thus, retaining plaquette interactions only in
interactions. Since both types of interactions are quite conmodel (1) does not mean that we expect that only systems
mon in real systems, we expect that such barriers might be with such fine-tuned interactions exhibit glassy behavior.
rule rather than an exception. In our opinion, it is the absenc&uch a choice is needed only to generate entropy barriers in
of energy barriergas in the two-spin Ising modeWwhich is  lattice models. In off-lattice models such barriers are likely
unlikely to exist in real systems. As for the entropy barriers,to be more generic.

they are also likely to be common in real systdi3ig]. How- Note added in proofRecently Swiftet al. (e-print cond-
ever, when mode(l) is perturbed, for example, by adding a mat/0003384% provided further evidence of the glassy behav-

two-spin interaction, then the ground state becomes doublior of model(1).
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