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Cooling-rate effects in a model of glasses
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Using Monte Carlo simulations we study cooling-rate effects in a three-dimensional Ising model with
four-spin interactions. During coarsening, this model develops growing energy barriers, which at low tempera-
ture lead to very slow dynamics. We show that the characteristic zero-temperature length increases very slowly
with the inverse cooling rate, similarly to the behavior of ordinary glasses. For computationally accessible
cooling rates the model undergoes an ideal glassy transition, i.e., the glassy transition for a very small cooling
rate coincides with a thermodynamic singularity. We also study the cooling of this model with a certain
fraction of spins fixed. Due to such heterogeneous crystallization seeds, the final state strongly depends on the
cooling rate. Only for a sufficiently fast cooling rate does the system end up in a glassy state, while slow
cooling inevitably leads to a crystal phase.

PACS number~s!: 05.50.1q
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I. INTRODUCTION

Although intensively studied for several decades@1#,
glasses are still not fully understood due to their very co
plicated structure. However, gradual progress can be cle
observed. Recently, very interesting theoretical results w
obtained concerning, for example, aging in some mod
with glassy dynamics@2#. From a theoretical point of view
one of the problems is the lack of sufficiently simple mod
of glasses. Although recently important progress has b
made, the most realistic off-lattice models still constitute
enormous computational challenge@3#. A possible alterna-
tive might be lattice models. Even when the existence of
lattice structure is questionable, such simplified mod
sometimes do provide a satisfactory description of a ma
scopic system. A prime example is that the critical point
certain binary alloys is in the universality class of the thre
dimensional ferromagnetic Ising model@4#. However, an
Ising model with only ferromagnetic interactions is not
good candidate for a model of glasses, since its relatively
dynamics cannot trap the system in the disordered~glassy!
phase, and the system quickly reaches the low-tempera
~crystal! phase. The simplest way to slow down the dyna
ics is to introduce randomness into the Hamiltonian of
model@5#. However, glasses under certain experimental c
ditions might be transformed into translationally invaria
crystals, and it is unlikely that random Hamiltonians lead
translationally invariant solutions. This suggests that o
should look for translationally invariant Hamiltonians with
glassy phase resulting exclusively from the dynamics of
model and not from built-in randomness.

In random systems slow dynamics is mainly due to
ergy barriers@6#. Is it possible to generate energy barriers
nonrandom models? A positive answer to this question
given some years ago by Shore and co-workers@7,8# who
showed that in the three-dimensional Ising model w
nearest- and frustrating next-nearest-neighbor interact
~the SS model! there exist energy barriers which diverg
with the size of correlated regions. These barriers are du
the fact that the energy of an excitation in this model d
PRE 611063-651X/2000/61~6!/6375~8!/$15.00
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pends not only on the area of its boundary~as in the ordinary
Ising model!, but also on the total length of edges of th
boundary. At sufficiently low temperature, due to these b
riers, the dynamics of the model is able to trap the system
the disordered phase, which we can tentatively identify a
glassy phase. The trapping mechanism is effective only
temperatures below the corner-rounding transitionTcr . For
T.Tcr the trapping mechanism is not effective; fast~ordi-
nary! dynamics is restored, and the system quickly evolv
toward the low-temperature phase. However, Shore and
workers argued that their model is not yet a satisfact
model of glasses because these barriers vanish at the co
rounding transition, which in turn implies unrealistically fa
increase of zero-temperature characteristic lengthl 0 with the
inverse cooling rater 21. It would thus be interesting to look
for some other nonrandom models which generate ene
barriers and which, hopefully, would be free of this de
ciency.

Recently, it was shown that a three-dimensional Is
model with plaquette interactions also generates diverg
energy barriers which slow down the low-temperature d
namics@9,10#. The energy barriers in this model appear to
due to the same mechanism as in the SS model. Howeve
a number of respects the behavior of this model is qu
different from the SS model. First, there exists a tempera
Tg ~later identified as a glassy transition temperature! which
separate two regimes: ForT.Tg the random quench, after
short transient, reaches the liquid phase, in which it seem
be stable, at least during the computationally accessible t
scale. ForT,Tg the random quench evolves toward the lo
temperature phase, but due to the above mentioned en
barriers it is trapped in the glassy phase. However, the cry
sample undergoes a transition into the liquid phase at
temperature, which is considerably higher than the gla
transitionTg . This means that in a certain temperature ran
due to the very strong metastability, the system remains
ther in a crystal phase or a liquid phase, depending on
initial configuration. In addition, numerical calculations su
gest @10# that in this model energy barriers exist even f
temperaturesT.Tg , and thus this model might be free o
6375 ©2000 The American Physical Society
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6376 PRE 61A. LIPOWSKI AND D. JOHNSTON
the cooling-rate anomaly of the SS model.
The objective of the present paper is to examine the

havior of this model under cooling. We show that the ch
acteristic zero-temperature length indeed increases m
more slowly with the inverse cooling rate than in the S
model, and it is probable that this increase is logarithm
l 0;2 ln r, as expected for ordinary glasses.

However, for extremely slow cooling rates, such an
crease ofl 0 in our model is unlikely to hold. We observe
@10# that, although very strong, metastability in this mode
only a quantitative effect, and for a sufficiently large syste
size a droplet nucleation mechanism should be effect
This means that, for a temperature below the critical te
perature~which is determined from the crossing point of th
free energies of the liquid and crystal phases!, the model
prepared in the liquid state should collapse onto the cry
~or glassy! phase within a finite time. However, the estimat
size of critical droplets is rather large, which suggests@10#
that this finite time is also large. Thus, the cooling ra
needed to observe such a collapse are presumably com
tionally inaccessible.

Some time ago Anderson proposed@11# that the glassy
transition, which is a kinetic phenomenon, might be rela
in the limit of small cooling rate to a certain thermodynam
transition@12#. The results of the present paper show that
Ising model with plaquette interactions provides an intere
ing realization of this idea: the peak in the specific heat
the liquid occurs exactly at the temperature where the in
nal energy jumps under very slow cooling.

Anderson’s idea has had a rather limited experimen
support@13#. The main problem is that under slow@14# cool-
ing real liquids do not become trapped in the glassy ph
but instead crystallize. The reason for this is that when liq
is cooled below the melting point it becomes metastab
and, within a finite time, due to heterogeneous or homo
neous crystal nucleation@15# it crystallizes. Only under suf-
ficiently fast cooling can the crystal nucleation be avoid
and the liquid be trapped in the glassy state. In this cont
the model with plaquette interactions corresponds to an
most ideal liquid with an extremely large lifetime of a met
stable state. Although such strong metastability allows u
examine the interesting regime of slow cooling, it also inh
its the crystallization of supercooled liquid. To study t
competition of crystallization and glass formation with
computationally accessible times, we enhanced the for
effect by fixing a certain fraction of spins. We observe th
due to such heterogeneous crystallization seeds the final
of the system indeed strongly depends on the cooling r
That is, only for sufficiently fast cooling can the system be
the crystallization trap and end up in a glassy state. When
cooling is slow, similar to real liquids, the system cryst
lizes. Thus, in agreement with experiments, the glassy t
sition appears to be a kinetic phenomenon, with the coo
rate determining the final state of the system. These res
appear to indicate that the three-dimensional Ising mo
with plaquette interactions is a very promising candidate
a lattice model of glasses.

In Sec. II we introduce the model, and briefly describe
already reported, rather unusual, properties. In Sec. III
study the behavior of our model under continuous cooli
The analysis of the results in presence of crystallizat
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seeds is done in Sec. IV. A final discussion of our resu
including the relation with the ideal glassy transition, is pr
sented in Sec. V. In this section we also argue why
model, being in some sense fine tuned, might shed s
light on the apparent robustness of glasses.

II. MODEL AND ITS BASIC PROPERTIES

In the present paper we study the three-dimensional Is
model with a four-spin interaction. Models with multispi
interactions have frequently been used, for example, in
context of random surfaces@16# or lattice field theory@17–
19#. There are also some reports of glassy behavior in s
systems@20–22#. Our model is defined by the Hamiltonian

H52( SiSjSkSl , ~1!

where the summation is over elementary plaquettes of
cubic lattice, andSi561. This model was recently studie
in the context of lattice field theory@23#. Moreover, the
glassy behavior was studied for the random version of mo
~1! @24#. Clearly, a ferromagnetic configuration minimize
Hamiltonian~1!. It is also easy to realize that flipping copla
nar spins does not change the energy. Thus any configura
obtained from the ferromagnetic configuration by flippin
coplanar spins is also a ground-state configuration. Also,
combination of such coplanar flippings~even for crossing
planes! does not increase the energy. Simple analysis al
these lines shows that for the model on the lattice of
linear sizeL the degeneracy of the ground state is equa
23L. Although the ground state of this model is strongly d
generate, its ground-state entropy is zero.

All the results reported in this paper were obtained us
a standard Monte Carlo method with random sequential
date using the Metropolis algorithm@25#. Some other details
concerning these simulations can be found elsewhere@10#.

A. Thermodynamics and metastability

Upon heating an arbitrary ground-state configuration,
model undergoes a sharp transition at the temperaturT
;3.9, where we have set the Bolzmann constantkB to unity
@9,23#. This transition is accompanied by a pronounced pe
in the specific heat. The system sizesL524 and 40 used in
these simulations were rather large, and the location of
peak is almost independent onL @10#. These results sugges
that the model undergoes a thermodynamic transition aro
T53.9.

However, upon cooling, a high-temperature~liquid!
sample the model does not undergo any change atT53.9.
Instead, it is only when cooled belowT5Tg;3.4 that the
liquid loses its stability and evolves toward the low
temperature phase. We observed that for 3.4,T,3.9 it is
virtually impossible to direct the evolution of a liquid samp
toward a low-temperature phase. The transition atT5Tg is
also accompanied by a peak in the specific heat, and, for
examined system sizesL524 and 40, the location of this
peak is also almost independent ofL @10#. The behavior of
the specific heat in the vicinity ofTg is shown in Fig. 1.

Using thermodynamic integration we calculated the fr
energy of both liquid and crystal phases of the model@10#,
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FIG. 1. The specific heatC as a function of
temperatureT calculated from the variance of th
internal energy forL524 (L) and L540 (1).
At each temperature we relaxed the system
103 Monte Carlo steps, and measurement w
done during 104 Monte Carlo steps.
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which show that the crossing point of these free energie
aroundT53.6. However, no changes were observed at t
temperature during the heating or cooling. The above
scribed thermodynamic properties suggests that at comp
tionally accessible time scale, model~1! undergoes two tran
sitions depending whether the system is being cooled
heated. These transitions seem to screen the ‘‘true’’ fi
order thermodynamic transition which presumably tak
place aroundT53.6, i.e., at the crossing point of the fre
energies.

Such a behavior of model~1! resembles hysteresis an
metastability effects, which frequently occur in ordina
first-order transitions. However, it is believed@26# that for
short-range interacting systems such effects are only qu
tative, and longer simulation time decreases the hyster
range and eventually pinpoint the temperature of the fi
order transition. On the other hand, our simulations@10# sug-
gest that in model~1! squeezing the hysteresis into the te
perature range smaller than (3.4,3.9) is almost imposs
@27#. The only way to overcome the very strong metastabi
of model~1! is to start simulations from inhomogeneous in
tial configurations, i.e., containing both phases of the syst
Indeed one observes@10# that the evolution of such a syste
depends on whether the temperature is above or below
expected thermodynamic transitionT5Tc53.6 @28#.

It is also interesting to confront the Monte Carlo resu
with mean-field calculations@29# or its extension to the
cluster-variational method~CVM! @19#. These calculations
predict, in agreement with Monte Carlo simulations, th
model~1! undergoes a first-order phase transition. Moreov
the location of transition point as predicted by the CVM@19#
is also in a good agreement with our estimationTc53.6. A
characteristic feature of these mean-field calculations is
existence of spinodal temperatures, i.e., a range of temp
ture where one of the phases of the model exists as a m
stable phase. However, these simple mean-field calculat
give no clue about the dynamical time scales of metasta
ity. Since in many systems metastability, as we already m
tioned, is only a quantitative effect, such phases are usu
disregarded as artifacts of the mean-field approximation
model ~1!, however, metastability is very strong and cann
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be disregarded: in Sec. IV, we suggest that this is an esse
factor responsible for the glassy properties of the mod
Such a strong metastability of model~1! is probably related
to dynamically generated energy and entropy barriers. H
ever, a more precise understanding of the mechanism ge
ating such a strong metastability is clearly desirable.

B. Domain coarsening and energy barriers

When cooled below its critical point, a macroscopic sy
tem undergoes the interesting phenomenon of domain co
ening @30#. Various theoretical and numerical techniqu
predict that for systems with a scalar order parameter
nonconserved dynamics, as is the case here, the characte
length l ~which approximately corresponds to the avera
size of domains! should increase with timet as

l;t1/2. ~2!

However, as shown by Shoreet al. @7#, for certain models of
this kind the increase ofl can be much slower. That is, the
showed that for the SS model and sufficiently low tempe
ture the characteristic lengthl increases only logarithmically
in time (l; ln t) @31#.

Of course, a slow coarsening is compatible with a co
monly accepted conception of glasses. One has to em
size, however, that coarsening in glasses cannot be rega
as a growth of crystalline domains@which is the case for
model ~1!#. For glasses, even the very definition of chara
teristic length scale constitutes an open problem. If it exi
most likely this quantity does not measure the length of a
recognizable order.

Recently we have noted that for model~1! the character-
istic length also increases very slowly in time, presuma
also logarithmically. An additional support for the fact thal
might increase in the same way as in the SS model co
from the fact that both models at low temperature gene
energy barriers in the same manner.

To see how these barriers arise in model~1!, let us con-
sider first its two-dimensional~square lattice! version. In par-
ticular, let us consider a square domain of ‘‘2 ’’ spins of
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6378 PRE 61A. LIPOWSKI AND D. JOHNSTON
linear sizeM surrounded by ‘‘1 ’’ spins @see Fig. 2~a!#.
Elementary counting@9# immediately shows that the energ
excess of such a domain is independent of its sizeM, and
depends only on the number of corners in this domain~i.e.,
four!. Such a dependence of energy of excitation on its s
should be contrasted with the ordinary~two-spin! Ising
model, where this excess energy is proportional to the pe
eter of the excitation~i.e., 4M ). Next let us observe that to
remove such an excitation the system has to flip some of
2 spins, but this will inevitably increase the number of co
ners in the resulting domain and thus the energy@see Fig.
2~b!#. This argument easily generalizes to three dimensio
for the cubiclike domain the excess energy is proportiona
the total length of boundary edges~i.e., 12M ). Again this is
in contrast to the ordinary Ising model, where the exc
energy is proportional to the total area of the boundary~i.e.,
6M2). Similarly to the two-dimensional case, to remo
such an excitation the system has to climb some energy
riers, which this time will increase linearly withM. At low

FIG. 2. ~a! An example of a low-energy interface in the two
dimensional version of model~1!. An excess energy~i.e., the num-
ber of ‘‘unsatisfied’’ plaquettes! comes from the four corne
plaquettes. To remove such a configuration the system is likel
proceed through configurations like those shown in~b!. The excess
energy is higher in this case.~c! An example of high-energy inter
face @ferromagnetic and antiferromagnetic states are ground s
of model ~1!#. One can easily see that the excess energy incre
linearly with the size of this excitation. However, to remove th
excitation the system does not have to increase its energy~there are
no energy barriers in this case!. The process of removal of suc
excitations should be much faster and basically such as in the
spin Ising model.
e

-

e
-

s:
o

s

r-

temperature such barriers make the process of removing
excitations extremely slow. Similar arguments were mo
thoroughly elaborated for the SS model@7#.

However, to show that such barriers are relevant in
process of coarsening, one has to show that the system s
taneously generates such cubic configurations. Snapshot
figurations for the SS model clearly show@7# that the system
indeed generates such configurations. However, due to
strong degeneracy of the ground state, the situation is m
complicated for model~1!. First, let us note that low-energ
domain walls, as between1 and 2 domains, are not the
only possibility. For example, a cubiclike antiferromagne
domain ~antiferromagnetic configuration is also one of t
ground states! surrounded by1 spins, as in Fig. 2~c!, has an
excess energy proportional to the area of the boundary~i.e.,
as in the ordinary Ising model!. There are also some othe
ground states, for which the energy of domain walls in so
sense interpolates between these low- and high-energy
amples. The extent to which these different domains w
appear in the late-time configurations is determined by a v
complicated dynamic process. In general, however, for hi
energy domain walls the energy barriers are much smalle
even nonexistent, and we expect that they will be relativ
quickly eliminated, and the late-time evolution will be dom
nated by dynamics of low-energy~and high-barrier! do-
mains. To some extent this is confirmed in Fig. 3, whi
shows a zero-temperature snapshot configuration obta
during a cooling process, which is described in more deta
Sec. III. Although we would need the whole thre
dimensional structure to draw domain boundaries, we
see that indeed a great many relatively large cubiclike~flat!
ferromagnetic domains exist, and they are presumably
principal reason for the slow dynamics of model~1!. This
argument will be also used in Sec. III to relate the ene
excess and the characteristic length.

To summarize this subsection, our simulations@10# sug-
gest that the low-temperature~i.e., atT,Tg) coarsening in
model ~1! is very slow, which is presumably related to e
ergy barriers which the model can spontaneously gene
during such a process. An independent confirmation of
model’s slow dynamics is presented in Sec. III.

to

es
es

o-
e
e

FIG. 3. An example of zero-temperatur
single-layer configuration obtained during th
cooling of model~1! at the rater 50.0002, and
for the system sizeL550. Up and down spins are
denoted byL and dots, respectively.
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FIG. 4. The internal energyU as a function of
temperature for~from the top! r 50.02, 0.002,
0.0005, 00002, 0.00005, and 0.00002.
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III. COOLING

A glassy transition is essentially a kinetic phenomen
which appears when a physical system is being cooled. U
ally one prepares the system at a certain temperature a
the glassy transition and then lowers the temperature e.g
a constant cooling rater 5dT/dt. One of the important quan
tities describing this process is a zero-temperature chara
istic length l 0, which can be regarded as an average size
domains at the end of the cooling process~i.e., atT50). Of
course the slower the cooling the larger the character
lengthl 0, since the system has more time to build some lo
order. However, for glasses the growth of domains is v
slow. More precisely, on phenomenological grounds, one
pects @7# that in glassesl 0 increases only logarithmically
with the inverse cooling rate, that is,

l 0; ln~1/r !. ~3!

Such a slow growth ofl 0 might be contrasted with a muc
faster one,

l 0;r 21/2, ~4!

which appears in an ordinary Ising model@32#. Actually, it is
conjectured that the exponents entering asymptotic exp
sions~2! and~4! are also the same for other types of dyna
ics. With this conjecture, relation~3! is simply a conse-
quence of the fact that for glasses the characteristic lengl
is expected to grow logarithmically in time.

However, from the fact that the model has a slow lo
temperature dynamics does not follow thatl 0 also slowly
increases as function of inverse cooling rate. This is clea
the case of the SS model: when prepared at a tempera
above the critical temperature and submitted to some c
ing, the model inevitably has to pass through the fa
dynamics temperature range. For the small cooling rate
growth of order in this temperature range is dominant, a
thus l 0;r 21/2 follows. Such a rapid increase ofl 0 is the
main reason why SS is not yet a satisfactory model
glasses. In the following we present some numerical d
,
u-
ve
at

er-
of

ic
l

y
x-

s-
-

-

ly
re
l-

t-
e
d

f
ta

which show that in model~1! l 0 increases much slower tha
in the SS model and we believe that the growth might
even consistent with Eq.~3!.

We simulated model~1! under continuous cooling with a
constant cooling rater and initial temperatureT054.2 (T0
.Tg). This means that the temperature as a function of ti
is given byT5T02rt . The temperature dependence of i
ternal energy is shown in Fig. 4. We performed calculatio
for several system sizesL in order to ensure thatL was
sufficiently large. For example forr 50.02 the system size
L530 is sufficient to obtain size-independent results, but
r 50.00002 we had to takeL570. One can see that althoug
r decreases by three decades, the zero-temperature e
U0(r ) very slowly approaches the ground-state energyUgs
523. Such a behavior provides a qualitative confirmati
of the glassy dynamics of our model. For a quantitative co
parison we have to relate the excess energydU(r )5U0(r )
2Ugs with the characteristic lengthl 0. Although it is not a
rigorously established relation, one can assume that th
quantities are related in the following way@7#:

dU~r !;
1

l 0
. ~5!

To find how l 0 increases with the inverse cooling rate, w
plot dU(r ) as a function ofr in the double-logarithmic scale

FIG. 5. The excess energydU(r ) as a function ofr in the
double-logarithmic scale. The dotted line has a slope 0.2.
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FIG. 6. The internal energyU as a function of
temperature for~from the least to the most steep!
r 50.02, 0.002, 0.0005, 0.0002, 0.0000
0.00002, 0.00001, and 0.000002. Calculatio
were done forL550, and with 5% of spins fixed
in the ‘‘up’’ state. The dotted line corresponds t
heating the ferromagnetic state (L540) without
any spins fixed. The slow-cooling results (r
,0.0005) in the low-temperature regime are i
distinguishable from those corresponding to he
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and the graph is shown in Fig. 5. From this plot one can in
that approximatelydU(r );r 0.2 which, using Eq.~5!, be-
comesl 0;r 20.2. However, the data in Fig. 5 have a positiv
curvature, and the asymptotic increase ofl 0 might be even
slower. In addition to that we want to argue that relation~5!
might not hold for model~1!, and a modified relation will
lead to even slower increase ofl 0.

First let us briefly review arguments leading to relati
~5!. Let us consider an ordinary Ising model on a thre
dimensional lattice of linear sizeL. If the characteristic
length is equal tol, then the number of domains in this sy
tem scale as (L/ l )3. Since the energy associated with ea
domain scales asl 2 ~i.e., like the area of the surface of do
mains!, thus the total excess energy per site in the sys
scales asl 2(L/ l )3/L351/l , and Eq.~5! follows. However, as
we mentioned in Sec. II, model~1! might generate low-
energy interfaces whose energy scales asl. Repeating the
above arguments for such interfaces immediately imp
that

dU~r !;
1

l 0
2

, ~6!

instead of Eq.~5!. Although it is difficult to provide convinc-
ing arguments, we would like to argue in favor of relation~6!
rather than Eq.~5!. That is, we suggest that at the end of t
cooling process~i.e., atT50), the interfaces in the system
will be mainly of low-energy and high-barrier type, simila
to those shown in Fig. 2~a!. Indeed, as we already noted
the end of Sec. II, the high-energy interfaces are those w
the lowest~or even zero! energy barriers, and thus their re
moval is likely to be the fastest process in the course
cooling the system. Moreover, as one can see in Fig. 3,
substantial portion of our system is indeed occupied by r
tively large and ferromagnetic segments; as we already m
tioned, interfaces between such domains have low ene
~and high barriers!.

Inverting Eq.~6! we obtainl 0;„dU(r )…1/2, and thus the
increase ofl 0 would be given by half of the slope in Fig. 5
This would imply thatl 0 increases liker 20.1 or, taking into
r
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m
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th

f
e
-
n-
gy

account the positive curvature in Fig. 5, even slower. B
even with Eq.~5! rather than Eq.~6! holding, the increase o
l 0 (;r 20.2 or slower! is very slow, and equally likely one
can expect that the asymptotic increase is only logarith
with r. However, much more extensive simulations would
needed to definitely resolve this issue.

Slow growth of order upon cooling belowTg is one of the
indications of glassiness. It is well known, however, tha
glassy transition is also manifested through the beha
aboveTg . That is, when cooled to a temperature close
~but above! the glassy transition, liquids slow down the
dynamics. As already reported@10#, model ~1! also shows
signs of such a slowdown: the time evolution of the intern
energy exhibits fluctuations on an increasing time scale.

Arguments given in this section and in previous sectio
suggest that the glassy phase might be composed of dom
whose energy increases not as their surface but rather as
linear size. Recently, there appeared the idea that in fin
dimensional spin glasses, the low-temperature phase m
be also composed of effectively tensionless domains wh
create spongelike structures@33#. This suggests that essenti
features of glasses and spin glasses might be very simila
least at the geometrical level.

IV. CRYSTALLIZATION VERSUS GLASS FORMATION

Although interesting on theoretical grounds, the slo
cooling regime is very difficult to examine experimentall
As we already mentioned in Sec. I, this is because un
slow cooling liquids have a sufficient amount of time
nucleate ‘‘crystal seeds’’ which divert the evolution towa
the crystal phase. To beat the crystallization trap and tra
form a liquid into a glass, one has to cool the system su
ciently quickly, which sometimes requires a very sophis
cated technique@15#.

As we already mentioned, the free energies of crystal
liquid phases of model~1! crosses aroundT5Tc;3.6, which
means that forTg,T,Tc liquid is in a metastable state. O
the other hand, the present calculations show~see Fig. 4! that
in this temperature range even under the slowest, comp
tionally accessible, cooling, the crystallization never occu
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In order to study the competition of crystallization and gla
formation we have to enhance the former process. We
this by fixing a certain fraction of spins in the ‘‘up’’ state
Numerical results for the cooling of such a system are sho
in Fig. 6. One can see that for fast cooling (r 50.2 and
0.002! liquid becomes trapped in the~high-energy! glassy
state. On the other hand, slow cooling enables the syste
reach the~low-energy! crystal state. Let us also note that
the limit r→0 the jump in the internal energy seems to co
verge toT53.6, i.e., the crossing point of the free energ
of the crystal and the liquid phases. Such a behavior is c
sistent with the fact that forTg,T,3.6 the liquid is meta-
stable; when it is sufficiently enhanced, crystallization mig
take place.

V. DISCUSSION

The main goal of the present paper was to examine
behavior of the Ising model with a four-spin interaction u
der cooling. We have shown that the zero-temperature c
acteristic length increases very slowly as a function of
inverse cooling rate. Moreover we have shown that wh
nucleation seeds are introduced and the cooling is s
enough, the system ends up in a crystal phase. Thus
agreement with many experiments, the glassy transition
comes a kinetic phenomenon driven by the cooling ra
These results, together with the fact that the model posse
a slow-coarsening dynamics, is a very strong indication t
model ~1! might capture the essence of the glassy transi
in realistic systems. In this section we discuss some o
implications of our results.

A. Ideal glassy transition

Some time ago it was proposed by Anderson that in
limit of a vanishing cooling rate the glassy transition mig
be related to a certain thermodynamic transition. This id
has only limited experimental confirmation@13#: the excess
entropy of the supercooled liquid extrapolates to zero a
temperature, which seems to be close to the temperatu
the singularity of the viscosity, when fitted using the s
called Vogel-Tammann-Fulcher formula. However, expe
mental difficulties lead to very ambiguous results, and e
the very existence of this hypothetical thermodynamical tr
sition is still not certain.

More generally, Anderson’s idea expressed the expe
tion that changes of dynamical and thermodynamical pr
erties should be related. Indeed, there are some reports
porting this statement. For example, some works
frustrated and/or disordered systems indicate that the app
ance of nonexponentially decaying correlation functio
might be induced by a certain thermodynamical@34# or per-
colative transition@35#. Another example is the SS mode
frequently referred to in our paper, where the appearanc
the slow-dynamics regime is induced by the corner-round
transition, which is a well-defined equilibrium transitio
@36#.

In our opinion, a comparison of Figs. 1 and 4 shows t
model ~1! conforms to Anderson’s idea. The specific he
shown in Fig. 1 is a thermodynamic quantity. It was calc
lated in a~standard! quasiequilibrium manner: after fixing
temperature we relaxed the system, and then measure
s
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variance of the internal energy. The sharp peak seen in F
indicates a thermodynamiclike singularity in this model. O
the other hand, an almost vertical drop of the internal ene
under continuous cooling, shown in Fig. 4, indicates t
proper~i.e., dynamic! glassy transition. One can see in Fig.
that the lower the cooling rater the sharper the transition. A
first sight one might expect that in the limitr→0 the transi-
tion becomes infinitely sharp and coincides with thermod
namic singularities, as, e.g., the peak of the specific h
However, as we already mentioned, our previous results@10#
suggest that the metastability of the liquid is only a fin
time and size effect, and neither the peak nor the inter
energy drop can be made perfectly sharp. Such a scena
in agreement with experimental description of the glas
transition@1#.

B. Mechanism of the glassy transition

Which properties of our model are responsible for t
glassy behavior? The mechanism which we would like
suggest is based on the presence of both entropy and en
barriers. The latter were already discussed in this paper,
it is likely that they are the source of the slow low
temperature dynamics of model~1! and also of the SS mode
But they are not sufficient for the model to be glassy: in t
SS model these barriers vanish below the critical point, a
as a result the model orders too quickly.

Measurements of a certain characteristic time suggest
energy barriers in model~1! exist even above the glassy tra
sition @10#. When this property is combined with the abilit
of the liquid to persist down toTg , it leads to a remarkable
consequence: when cooled belowTg , the liquid loses stabil-
ity, and domain coarsening begins. But strong energy ba
ers, which exist between certain types of domains, ham
the process and trap the system in the glassy phase. Co
quently, there is no fast-dynamics regime in the lo
temperature phase, and upon cooling the system orders
slowly. The second crucial property is thus the ability of t
liquid to persist~for some time! in the metastable state. Sinc
the liquid state is highly disordered, we expect that it is su
ported by some entropy barriers@37#. The only argument
which we can provide to justify this claim is that these e
tropy barriers are presumably related to the strong deg
eracy of the ground state of model~1!, which leads to many
different types of small domains in the liquid phase. In t
SS model the ground state is only double degenerate,
apparently such barriers are absent.

We have to emphasize, however, that the very concep
energy and entropy barrier is only approximate. At fin
temperature it is more appropriate to consider rather fr
energy barriers but then the whole mechanism beco
much more difficult to comprehend. We hope that furth
studies will explain properties of this model in a more rigo
ous way.

C. Model „1… and the robustness of glasses

It is sometimes claimed that virtually every liquid can b
transformed into glass, provided that the cooling rate is f
enough@15# and any model of glasses should explain su
robustness of glasses. As already mentioned, the glassy
havior in our model results from the presence of both
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tropy and energy barriers. How robust might such proper
be in real systems? First let us consider the energy barr
The SS model contains competing nearest- and next-nea
neighbor interactions, and model~1! contains only multiple
interactions. Since both types of interactions are quite c
mon in real systems, we expect that such barriers might
rule rather than an exception. In our opinion, it is the abse
of energy barriers~as in the two-spin Ising model! which is
unlikely to exist in real systems. As for the entropy barrie
they are also likely to be common in real systems@37#. How-
ever, when model~1! is perturbed, for example, by adding
two-spin interaction, then the ground state becomes dou
D
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st-
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degenerate~like the SS model!, and entropy barriers will
presumably disappear. Such a fragile nature of entropy
riers in model~1! might be a consequence of the discreten
of the model. Thus, retaining plaquette interactions only
model ~1! does not mean that we expect that only syste
with such fine-tuned interactions exhibit glassy behavi
Such a choice is needed only to generate entropy barrie
lattice models. In off-lattice models such barriers are like
to be more generic.

Note added in proof:Recently Swiftet al. ~e-print cond-
mat/0003384! provided further evidence of the glassy beha
ior of model ~1!.
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